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Abstract
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for
hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses
accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated
College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of
genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse
pressure. We pursued genome-wide interrogation in Stage 1 studies (N= 117 438) and follow-up on promising variants in
Stage 2 studies (N= 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84
known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the
1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of
genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show
strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes
involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and
function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of
educational attainment or SES in further dissection of the genetic architecture of BP.

Introduction

Educational attainment is among the most widely used
indices of socioeconomic status (SES) in epidemiologic
studies [1,2]. Multiple studies have demonstrated a step-
wise decline in all-cause mortality with increasing levels of
education [1]. Compared with other measures of SES, such
as income and occupation, the use of educational attainment
has several advantages: it is stable after young adulthood,
simple to capture, has a low nonresponse rate, and is
not affected by poor health in adulthood [1,3]. Furthermore,
the relationship between educational attainment and cardi-
ovascular disease traits tend to be more consistent and

stronger [4]. Higher educational attainment is related to
improved health efficacy (such as preventive health beha-
viors and problem-solving capacity), improved access to
health care, and more favorable socio-psychological con-
ditions (such as personal control and social support) [2,3].

Several variables of educational attainment investigated in
epidemiologic studies in relation to cardiovascular risk traits
include continuous variables (such as years of education) and
various partitions (such as completing high school or com-
pleting college degree) [5–11]. Low educational attainment is
related to high blood pressure (BP) and increased hyperten-
sion (HTN) risk as evidenced in a meta-analysis of 51 studies
across 20 countries [3]. Educational attainment is also related
to coronary artery disease [12], coronary calcification [13],
and other cardiovascular risk traits including metabolic syn-
drome [10], lipid levels [9,10,14], smoking behavior [12,15],
salt intake [16,17], and leisure-time physical activity [18].
Furthermore, the genetic effects on HTN may vary as a
function of educational attainment. For example, a herit-
ability study of EUR-ancestry male twins showed higher
heritability of HTN at higher education levels (h2= 0.63 with
>14 years of education compared with h2= 0.46 with ≤14
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years of education) [19], suggesting interactions between
genes and educational attainment.

While genome-wide association studies have investi-
gated the genetic contributions to educational attainment
[6], there has been no comprehensive effort to examine the
role played by gene-environment interactions in BP using
educational attainment as the environmental exposure.
Within the CHARGE Gene-Lifestyle Interactions Working
Group [20], we performed genome-wide meta-analysis of
systolic BP (SBP), diastolic BP (DBP), mean arterial pres-
sure (MAP), and pulse pressure (PP), accounting for gene-
educational attainment interactions. Based on the avail-
ability of data across participating studies, we considered
two educational attainment variables, “Some College” (yes/
no, for any education beyond high school) and “Graduated
College” (yes/no, for completing a 4-year college degree).
Herein, we report our findings based on up to 411,225
individuals from five ancestry groups.

Subjects and methods

Participating studies

We performed our analysis in two stages (Fig. 1). A total of
42 cohorts including 117 438 men and women (aged 18–80
years) from European (EUR), African (AFR), Asian (ASN),
Hispanic (HIS), and Brazilian (BRZ) ancestries contributed
to Stage 1 genome-wide interaction analyses (Table S1). An
additional 49 cohorts including 293 787 individuals con-
tributed to Stage 2 analyses of top single nucleotide variants
(SNVs, also including a small number of insertion and
deletion [indels] variants) selected from Stage 1 (Table S2).
Participating studies are described in Supplementary

Material. Since discoveries to date are largely from EUR
populations, considerable effort was made to recruit most of
the available non-EUR cohorts into Stage 1. Each study
obtained informed consent from participants and approval
from the appropriate institutional review boards.

Phenotype and lifestyle variables

We performed our analysis for SBP, DBP, MAP, and PP.
After computing SBP and DBP when multiple measure-
ments were available, we adjusted for antihypertensive
medication use by adding 15 mmHg and 10 mmHg to SBP
and DBP, respectively [21]. After medication adjustment,
MAP was computed as (SBP+ 2DBP)/3, and PP was
computed as SBP minus DBP (SBP–DBP). To reduce the
influence of possible outliers, Winsorizing was performed
for each BP value that was more than six standard devia-
tions away from the mean. Descriptive statistics for
these four BP traits are presented in Tables S3 and S4. For
educational attainment, two dichotomous variables were
created. The first variable, “Some College” (SomeCol), was
coded as 1 if the subject received any education beyond
high school, including vocational school (and as 0 if no
education beyond high school). The second variable,
“Graduated College” (GradCol), was coded as 1 if the
subject completed at least a 4-year college degree (and as 0
for any education less than a 4-year degree). Subjects with
missing data for BP, education attainment, or any covariates
were excluded from analysis.

Genotype data

Genotyping was performed by each participating study
using Illumina (San Diego, CA, USA) or Affymetrix
(Santa Clara, CA, USA) genotyping arrays. Imputation was
performed using the 1000 Genomes Project [22] Phase I
Integrated Release Version 3 Haplotypes (2010-11 data
freeze, 2012-03-14 haplotypes) as a reference panel, in most
cohorts. Information on genotype and imputation for each
study is presented in Tables S5 and S6.

Analysis methods

Each study performed association analyses using the fol-
lowing model:

E Yð Þ ¼ β0 þ βGGþ βEEducþ βGEG� Educþ βCC;

where Y is the BP variable (SBP, DBP, MAP, or PP value),
Educ is the educational variable (SomeCol or GradCol),
and G is the dosage of the imputed genetic variant coded
additively from 0 to 2. C is the vector of covariates, including
age, sex, field center (for multi-center studies), and principal
components. In addition, studies in Stage 1 performed

Genome-wide analyses of genetic variants imputed using the 
1000 Genomes Project reference panel

BP ~ SNV + Educ + Educ * SNV + age + sex (+ PC’s) 
BP ~ SNV + Educ + age + sex (+ PC’s)

S
ta

ge
 1

S
ta

ge
 2

All analyses for 4 traits (SBP, DBP, MAP, PP) × 2 education status (SomeCol, GradCol)

Association analysis of select variants
BP ~ SNV + Educ + Educ * SNV + age + sex (+ PC’s)

EUR
n=84,276

AFR 
n=16,665

ASN
n=11,352

HIS
n=1,456

TRANS
n=117,438

1,481 significant (P ≤ 5×10-8) and 3,309 suggestive (P ≤ 10-6) variants

BRZ 
n=3,689

EUR
n=264,052

AFR
n=7,198

ASN
n=10,906

HIS
n=11,631

TRANS
n=293,787

Fig. 1 Study design with summary of data included in this study.
Educ: education status (considering either SomeCol or GradCol status
separately); PC principal component, EUR European, AFR African,
ASN Asian, HIS Hispanic, BRZ Brazilian, SNV single nucleotide
variant, TRANS trans-ancestry (i.e., combining all ancestry groups
through meta-analysis).
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association analysis using the following genetic main-effect
model with education attainment:

E Yð Þ ¼ β0 þ βGGþ βEEducþ βCC:

Each study provided the estimated SNV effect (βG),
estimated SNV-educational attainment interaction effect
(βGE), their robust standard errors (SEs), and a robust esti-
mate of the covariance between βG and βGE. We performed
meta-analysis using the 1 degree of freedom (DF) test of the
interaction effect (βGE) and 2DF test of both SNV (βG) and
interaction effects (βGE). Inverse-variance weighted meta-
analysis was performed for the 1DF test and the joint meta-
analysis of Manning et al. [23] for the 2DF test, both using
METAL [24]. In Stage 1 EUR, AFR, ASN meta-analyses,
variants were included if they were available in more than
5,000 samples or at least three cohorts (these filters were not
applied to BRZ or HIS because of the fewness of cohorts
included in these meta-analyses). We applied genomic
control correction [25] twice in Stage 1, first for study-
specific GWAS results and again for meta-analysis results.
Genome-wide significant (P < 5 × 10−8) and suggestive (P <
1 × 10−6) variants in Stage 1 were taken forward into Stage 2
analysis. Genomic control correction was not applied to the
Stage 2 results as association test was performed for select
variants. Results presented reflect meta-analyses combining
Stages 1 and 2. Loci were defined by physical distance
(±1Mb around the index SNV of the respective locus).

Quality control (QC)

Each participating cohort in Stage 1 excluded variants with
minor allele frequency (MAF) <1%. We performed exten-
sive QC using the R package EasyQC [26] for all cohort-
specific and meta-analysis results. For Stages 1 and 2, we
excluded all variants with imputation quality measure <0.5.
In addition, to remove unstable study-specific results that
reflected small sample size, low minor allele count (MAC),
or low imputation quality, we excluded variants for which
the minimum of (MAC0, MAC1) x imputation quality <20,
where MAC0 and MAC1 are the MAC in the two education
strata (Educ= 0 and Educ= 1). The allele frequencies
provided by each cohort were compared against those from
the relevant ancestry-specific 1000 Genomes reference
panel. Marker names were harmonized to ensure con-
sistency across cohorts. In addition, we visually compared
summary statistics (e.g., mean, median, standard deviation,
inter-quartile range) of all effect estimates, SEs, and
P values. We examined SE-N plots [26] and quantile-
quantile (QQ) plots to reveal issues with trait transformation
or other analytical problems. Any problems encountered
during QC steps were resolved through communication
with the analysts from the participating studies. More
detailed information about the QC steps, including major

QC problems encountered and how they were resolved, are
described elsewhere [20,27].

Characterization of functional roles

A suite of tools implemented in FUMA GWAS [28] was
used to identify functional roles for the index variants and
nearby variants in linkage disequilibrium (LD; r2 ≥ 0.2) in
each of the novel BP loci. LD information was obtained
from the 1000 Genomes Project reference genome for the
ancestry with the most significant ancestry-specific asso-
ciation. If the most significant association was in trans-
ancestry analyses, the reference genome for the ancestry
with the next most significant association was used instead
[29]. One index insertion/deletion locus was not identified
in any of the reference genomes by FUMA and therefore
not detailed. Nearest gene annotations were limited to
protein coding, long non-coding RNAs, and non-coding
RNAs within 10 kb of index variants and variants in LD
(r2 ≥ 0.2) with the index variant [30].

For the index and LD variants, we used the RegulomeDB
score [31], which reflects a summary of annotations with
known and predicted regulatory elements such as DNAase
hypersensitivity, binding sites of transcription factors, and
promoter regions, and Combined Annotation Dependent
Depletion (CADD) [32] scores, which predict deleteriousness
of variants. The 15-core chromatin state (ChromHMM)
[33,34] was assessed for 129 epigenomes (labeled E001-
E129) to identify histone modifications consistent with epi-
genetic regulation of gene expression. Expression quantitative
trait loci (eQTLs) were determined using the GTEx_v7
database [35] for index and LD variants. Using nearest-gene
annotations, FUMA GWAS was used to generate tissue-
specific gene expression data (GTEx V7 dataset, 53 tissue
types); significance was determined as a Benjamini–Hochberg
false discovery rate (FDR) <0.05.

Results

Overview

We performed a meta-analysis of gene-education interac-
tions on SBP, DBP, MAP, and PP in two stages (Fig. 1). In
Stage 1, we pursued genome-wide interrogation in 117 438
individuals of EUR, AFR, ASN, HIS, and BRZ ancestries
(summary information, Table 1). After extensive quality
control (QC), we performed genome-wide meta-analyses at
~18.8 million SNVs and a small number of insertion and
deletion (indels) variants imputed using the 1000 Genomes
Project reference panel (QQ plots, Fig. S1). Through the
1DF test of the interaction effect and the 2DF joint test
of the SNV and interaction effects, we identified 1481
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genome-wide significant (P < 5 × 10−8) and 3309 sugges-
tive (P < 1 × 10−6) variants associated with any BP trait in
any ancestry and/or in trans-ancestry analysis. All sig-
nificant and suggestive variants were tested for association
in 293 787 additional individuals of EUR, AFR, ASN, and
HISP ancestries in Stage 2.

We performed meta-analyses combining Stages 1 and 2
(Manhattan Plots, Fig. S2). We identified 84 known BP loci.
This includes 82 loci identified through main-effect only
analyses [36–41], including 18 recently reported by Hoff-
mann et al. [42], Evangelou et al. [43], and Giri et al. [44];
and two loci (TFAP2A and PCDH9) recently reported by our
consortium through gene-smoking and gene-alcohol inter-
action analyses [27,45], which suggest the inter-correlated
nature of the various lifestyle traits.

We identified 18 novel genome-wide significant loci
(P < 5 × 10−8) located at least 1 Mb away from any known
BP loci (Table 2). Nine loci were identified through the
combined analyses of Stage 1 and 2; the remaining nine loci
were identified in Stage 1 but not available in Stage 2 for
combined analyses (Tables S7). The LocusZoom plots of
these novel loci are presented in Fig. S3. Two loci (SLIT3
and HRH4) were identified through the 1DF test of inter-
action effects. At both loci, the genetic effect on DBP was
stronger and beneficial in higher education and weaker and
detrimental in lower education. For example, at SLIT3, the
minor allele A was associated with a 4.82 mmHg lower
DBP in higher education (GradCol= 1), whereas it was
associated with a 2.25 mmHg higher DBP in GradCol= 0.
The remaining 16 loci were identified through the 2DF joint
test of the SNV and interaction effects; twelve loci
were identified considering ‘Some College’ (SomeCol) and
four loci were identified considering ‘Graduated College’
(GradCol).

Ancestry-specific and trans-ancestry analyses

Novel loci were identified through separate analyses of
AFR (12 loci), EUR (1 locus), trans-ancestry (4 loci), and in
both AFR and trans-ancestry (1 locus). This highlights the
importance of including non-EUR populations to identify
novel BP loci. By nature, AFR populations carry more rare
and low-frequency variants that may be very rare or
monomorphic in other ancestral groups [22]; the MAF for
the novel index SNVs range from 0.02 to 0.04 in AFR. The
enhanced discovery of novel loci in AFR ancestry may be
attributable to the relatively higher MAF in this population
versus in EUR. For example, rs141962517 (CAPDS) with a
MAF= 0.02 in AFR was significantly associated with SBP
(2DF P= 3.07 × 10−10; 1DF Interaction P= 1.99 × 10−7);
this variant was not present in other ancestries after filtering.

Among the 18 novel loci, three loci were identified
only through trans-ancestry analyses, as none of theTa
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ancestry-specific analyses reached genome-wide sig-
nificance. For example, the index SNV (rs189555401)
representing the four-variant locus within PIK3C2G was
suggestively associated with DBP (P= 1.31 × 10−7) in
AFR and not even nominally associated in HIS (P=
9.67 × 10−2). However, in trans-ancestry analysis com-
bining these two ancestral groups, the association reached
genome-wide significance (P= 4.10 × 10−8).

Functional annotation and eQTL evidence

To obtain functional annotations for the index variants and
nearby variants in LD (r2 ≥ 0.2), we used FUMA GWAS
[28]. Among the 18 index variants representing our novel
loci, two variants were intronic to a non-coding RNA
(ncRNA), six variants were intronic, nine variants were
intergenic, and the remaining variant (rs66907226) was an
indel without available annotation. Among the 499 variants
that include both the index variants and nearby variants in
LD, there were four exonic, four exonic-ncRNA, 119 intro-
nic, 67 intronic-ncRNA, two 3′ untranslated region (UTR),
seven up/downstream flanking, and 296 intergenic variants
(Table S8). Of the 499 variants, 13 had RegulomeDB [31]
scores better than or equal to 3a, suggesting at least moderate
evidence for involvement in transcription regulation (Table
S9). In total, 32 SNVs have CADD [32] scores ≥10,

representing the top 10% of predicted deleteriousness for
SNVs genome-wide. A single SNV (rs112332671) ~20 kb
upstream of HAS2 and 16 kb downstream of the ncRNA
HAS2-AS1 had a CADD score of 20.1, placing it in the top
1% of predicted deleteriousness.

The 15-core chromatin state (ChromHMM) [33] was
assessed for 127 epigenomes in the 17 index variants
(Table S9). Two had histone chromatin markers in regions
flanking the transcription start site and one in a region
associated with strong transcription in relevant tissues
including brain. Among all 499 LD variants, 45 had histone
chromatin markers characteristic of a transcription start
site, 64 had markers consistent with strong transcription,
and 25 were in enhancer regions. One LD variant
(rs555713705) was identified as cis-acting eQTLs [46,47]
for heart tissue in the GTEx_v7 database (FDR P value
ranging from 3.90 × 10−3).

Biologic plausibility of the new BP loci

Three novel BP loci are related to the central nervous sys-
tem (CNS)-adrenal signaling axis that is critical for BP
regulation. A locus (Fig. 2a) adjacent to ZDHHC17, iden-
tified in AFR and in trans-ancestry analyses, encodes a
membrane protein that mediates fusion of synaptic vesicles
to the plasma membrane. CADPS (Fig. 2b), identified in

Fig. 2 LocusZoom plots for 2 BP loci related to CNS-adrenal
signaling. a MAP-associated locus adjacent to ZDHHC17, identified
in AFR and in trans-ancestry, shows roles in CNS-adrenal signaling. In
neurons, ZDHHC17 encodes a membrane protein that mediates fusion
of synaptic vesicles to the plasma membrane, enabling the release of
neurotransmitters. Murine zdhhc17 knockout models show impaired
hippocampal memory and reduced synaptic plasticity, providing
potential biological links to working memory and subsequent educa-
tional attainment. b A locus intragenic to CADPS, identified in AFR, is

of potential biologic relevance given this gene’s expression in CNS
tissue and role in regulating the fusion of neuroendocrine vesicles and
release of vasoactive catecholamines from both adrenal and neural
tissue. Three LD SNVs have CADD scores >10, and four LD SNVs
have ChromHMM state signals consistent with strong evidence of
transcription regulation. SBP systolic blood pressure, DBP diastolic
blood pressure, MAP mean arterial pressure, PP pulse pressure. The
plots were created using LocusZoom (http://locuszoom.sph.umich.
edu/).
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AFR, is expressed in CNS tissue. Three variants in LD have
CADD scores >10, and four SNVs have ChromHMM state
signals consistent with strong evidence of transcription
regulation. PIK3C2G, identified in trans-ancestry analyses,
also shows roles in CNS-adrenal signaling. Three variants
in LD in this locus have CADD scores >10, including one
with a CADD score of 18 that is predicted to reside in an
enhancer region in fetal adrenal cells.

Two novel BP loci are related to renal fibrosis and cation
exchange. A locus, which includes a variant intragenic to
SLIT3, showed interaction evidence with educational attain-
ment in AFR (rs142385399, P= 2.79×10−8). A locus also
identified in AFR includes HAS2 and HAS2-AS1, which play
roles in renal fibrosis. In addition, we identified two novel BP
loci related to pathways involved in vascular smooth muscle
cell structure and function. A locus identified by trans-
ancestry analyses included a variant intragenic to CDON,
which is expressed in vascular smooth muscle cells. A locus
identified in AFR includes GNB3, which encodes a subunit
critical for signal transduction of several vasoactive peptide
G protein-coupled receptors involved in BP regulation. A
SNV in this locus shows ChromHMM chromatin states
consistent with strong transcription regulation in multiple
tissues, and three SNVs have strong cis-eQTL association
with GNB3 expression in nerve, artery, and skeletal muscle
tissue (minimum FDR P value 1.20 × 10−43).

Discussion

A relationship between educational attainment and BP has
been well demonstrated [48–51]. Furthermore, AFR ancestry
individuals have been shown to have a higher burden of HTN
than EUR-ancestry [52]. However, higher-educated AFR
ancestry individuals bear approximately twice the burden of
HTN as compared with their EUR-ancestry counterparts
[48,51], demonstrating that educational differences did not
fully account for this observed racial disparity. Herein,
we reported genome-wide meta-analyses for SBP, DBP,
MAP, and PP accounting for gene-educational attainment
interactions across five ancestry groups. We pursued a
genome-wide interrogation in 117 438 individuals (in
Stage 1) and follow-up analysis at selected variants in
293,787 additional individuals (in Stage 2). Through the
combined meta-analysis of stages 1 and 2, we identified 84
known and 18 novel loci at genome-wide significance. As
known loci have been discussed elsewhere, this report high-
lights several novel loci show biologic plausibility by invol-
ving physiologic systems implicated in BP regulation.

The CNS-adrenal signaling axis is critical for BP regula-
tion. Three novel BP loci (ZDHHC17, CADPS, and
PIK3C2G) are related to these pathways. In neurons,
ZDHHC17 encodes a membrane protein that mediates fusion

of synaptic vesicles to the plasma membrane, enabling the
release of neurotransmitters [53]. Murine zdhhc17 knockout
models show impaired hippocampal memory and reduced
synaptic plasticity, providing potential biological links to
working memory and subsequent educational attainment
[54]. Although a biological connection between ZDHHC17
and BP traits is not well established, zdhhc17 expression
induces neurite outgrowth in a rodent adrenal-derived cell
line [55]. Cadps plays a role in regulating the fusion of
neuroendocrine vesicles and release of vasoactive catecho-
lamines in calf adrenal and neural tissue [56]. Pik3c2g
encodes a phosphoinositide kinases that are expressed in a
sexually dimorphic pattern specifically in a zone of the
mouse adrenal cortex believed to play a role in steroid sex
hormone production [57]. Furthermore, PIK3C2G is under-
expressed in human hypertensive kidneys, providing a
potential biological link between the expression of adrenal
mineralocorticoid hormones and their target organ [58].
Among alcohol-preferring rats, pik3c2g expression is also
increased in the cerebral periaqueductal gray, a region
involved in pain, fear, and anxiety responses [59], possibly
providing a link to drivers of SES in humans [60]. Notably,
the loci including ZDHHC17 and CADPS demonstrated
some evidence of interaction with educational attainment (P
= 1.72 × 10−5 and 1.99 × 10−7, respectively).

Two new BP loci (HAS2 and HAS2-AS1, SLIT3)
show potential roles in renal function. A locus that includes a
variant intragenic to SLIT3 had a significant interaction term
with educational attainment. SLIT3 encodes a cell-cell adhe-
sion molecule that binds its receptor, ROBO4, in human-
derived endothelial stem cells directing the formation of
vascular networks [61]. SLIT3 also plays a role in directing
neuronal growth in the brain [62,63], and in renal and cardiac
development [64]. A locus including HAS2 and HAS2-AS1 is
also of interest for roles played in renal fibrosis. HAS2-AS1 is
an antisense ncRNA simultaneously expressed and thought to
stabilize the HAS2 transcript [65].

Two new BP loci (GNB3, CDON) have been shown to
regulate pathways involved in vascular smooth muscle cell
structure and function. We identified a locus in GNB3, which
encodes a G protein-coupled receptor subunit involved in BP
regulation. Several candidate gene association studies have
identified the synonymous GNB3 variant C825T (rs5443),
resulting in a splice variant of the β3 subunit, as significantly
associated with essential HTN [66,67], with BP response to
diuretic [68] and β-adrenergic receptor blockade [69], and
other cardiovascular traits [70]. Another locus identified by
trans-ancestry analyses included a variant intragenic to
CDON; this gene is expressed in vascular smooth muscle
cells [71], and encodes a cell-surface receptor complex that
regulates myocyte differentiation in rodents [72].

This large-scale multi-ancestry study has several limita-
tions. First, the practice of adjusting SBP and DBP by

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel. . .



adding 15 and 10 mmHg for antihypertensive use is based
on a method derived from a EUR-ancestry cohort [21].
While this approach is common among GWAS of BP traits
[36], we acknowledge that this practice may not be equally
appropriate and/or justified in all ancestry groups. Second,
while the sample sizes in diverse ancestries are a strength,
resulting in the identification of several novel BP loci par-
ticularly in AFR ancestry, several identified loci included
low-frequency variants that require further validation.
Third, main effect only analysis without educational
attainment was not performed, and this limits our ability to
resolve if novel loci identified through the 2DF joint test
could be found without considering educational attainment.
Fourth, the use of educational attainment as a proxy for SES
can present some challenges. The socioeconomic impact of
education has changed over time and may differ according
to birth cohort, as well as in other subgroups defined by
gender, ancestry, region, and/or country [1,49]. Even with
similar levels of educational attainment, social and envir-
onmental experiences were different between AFR and
EUR individuals in the United States, especially those
educated in the 1960s and 1970s, resulting in residual
confounding inequities between the ancestral groups [9,73].
This additional source of heterogeneity may have reduced
power for trans-ancestry analyses.

In summary, this multi-ancestry study that used gene-
education interactions on BP traits identified 18 novel loci
and validated 84 known BP loci. Ten novel loci were
identified in individuals of AFR ancestry, demonstrating the
need for pursuing genetic studies in diverse populations.
Several novel loci involve physiologic systems implicated
in BP regulation including genes involved in CNS-adrenal
signaling, vascular structure and function, and renal func-
tion. Two loci showed interaction evidence with educational
attainment. These findings may identify a role for educa-
tional attainment and SES in further dissection of the
genetic architecture of BP.
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